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Abstract

Analysis of Fourier heat conduction in heterogeneous and bi-composite media (e.g. porous media, fluid suspensions, etc.) subject to
Lack of Local Thermal Equilibrium (LaLotheq) reveals a condition for thermal oscillations and resonance to be possible. This paper
shows that this condition cannot be fulfilled because of physical constraints leading to the exclusion of thermal waves and resonance.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Previous analyses [1,2] showed that the physical condi-
tions necessary for thermal waves to be possible in porous
media heat conduction subject to Lack of Local thermal
equilibrium (LaLotheq) cannot be fulfilled by a Dual-
Phase-Lagging (DuPhlag) approximation of the two phase
conduction process for a rectangular slab subject to a com-
bination of Dirichlet–Dirichlet [1] or Dirichlet–Newmann
[2] set of boundary conditions. The present paper dem-
onstrates that for a combination of Dirichlet–Dirichlet
boundary conditions the exclusion of oscillations and con-
sequently resonance is anticipated in the general case and
not only in the Dual-Phase-Lagging (DuPhlag) approxima-
tion limit. The results apply also not only to porous media
but to any heterogeneous system consisting of two phases,
such as fluid suspensions [3], or bi-composite materials con-
sisting of a combination of two different solid phases.
When both phases are interconnected the derivations pre-
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sented below apply accurately, while for the case when
one phase is continuous and the other is dispersed (such
as solid particles suspended in a fluid) the Dual-Phase-Lag-
ging (DuPhlag) formulation applies accurately and not
merely as an approximation as demonstrated by Vadasz
[3]. In the latter case the DuPhlag results presented by
Vadasz [1,2] that are excluding thermal waves are also
accurately applicable.

The system of governing equations for Fourier conduc-
tion in porous media subject to Lack of Local Thermal
Equilibrium (LaLotheq) was showed by Tzou [4] to be
approximately equivalent to the Dual-Phase-Lagging
(DuPhlag) model of heat conduction. The latter can pro-
duce thermal waves in the form of oscillations (see [4]).
As a result the Dual-Phase-Lagging (DuPhlag) model can
yield thermal resonance when periodically forced by a peri-
odic heat source or a periodic boundary condition with a
forcing frequency that is in the neighbourhood of one of
the natural frequencies of the system. Tzou [4–6] presents
applications of the DuPhlag model to a wide variety of
fields from ultrafast (femtosecond) pulse-laser heating of
metal films, phonon–electron interaction at nano and
micro-scale heat transfer, temperature pulses in superfluid
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Nomenclature

Bh bi-harmonic dimensionless group, be/L
2

Bf bi-harmonic-Fourier dimensionless group, Bh/
Foq

c2 speed of propagation of the thermal wave, sq/ae

(dimensional)
cp,f, cs fluid and solid phase specific heat, respectively

(dimensional)
cn dimensionless damping coefficient defined by

Eq. (31)
Foq heat flux related Fourier number, aesq/L2

FoT temperature gradient related Fourier number,
aesT/L2

h integral heat transfer coefficient for the heat
conduction at the solid–fluid interface (dimen-
sional)

ks effective thermal conductivity of the solid phase,
ð1� uÞ~ks (dimensional)

~ks thermal conductivity of the solid phase, (dimen-
sional)

kf effective thermal conductivity of the fluid phase,
u~kf (dimensional)

~kf thermal conductivity of the fluid phase, (dimen-
sional)

L the length of the slab (dimensional)
q heat flux vector (dimensional)
t� time (dimensional)
T temperature, (dimensional)
TC coldest wall temperature (dimensional)
TH hottest wall temperature (dimensional)
x� horizontal co-ordinate (dimensional)

Greek symbols

ae effective thermal diffusivity, defined by Eq. (5),
(dimensional)

be bi-harmonic coefficient, defined in Eq. (5)
(dimensional)

cs solid phase effective heat capacity, (1 � u)qscs

(dimensional)
cf fluid phase effective heat capacity, uqfcp,f

(dimensional)
h dimensionless temperature, (T � TC)/(TH � TC)
u porosity
qs solid phase density
qf fluid phase density
sq time lag associated with the heat flux, defined by

Eq. (5), (dimensional)
sT time lag associated with the temperature gradi-

ent defined by Eq. (5), (dimensional)
xn dimensionless natural thermal frequency defined

by Eq. (31)
w time lags ratio defined by Eq. (10)

Subscripts

* corresponding to dimensional values of the
independent variables, except for cases where
there is no ambiguity, as listed in this nomencla-
ture

s related to the solid phase
f related to the fluid phase
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liquid helium, thermal lagging in amorphous materials, and
thermal waves under rapidly propagating cracks.

Analytical solutions as well as analysis of the DuPhlag
heat conduction were presented among others in excellent
papers by Xu and Wang [7], Wang et al. [8], and Wang
and Xu [9] and Antaki [10].

Applications of porous media heat transfer subject to
Lack of Local Thermal Equilibrium (LaLotheq) were
undertaken among others by Nield [11], Minkowycz et al.
[12], Banu and Rees [13], Baytas and Pop [14], Kim and
Jang [15], Rees [16], Alazmi and Vafai [17], and Nield
et al. [18]. While the significance of practically obtaining
the same temperature solution for each phase in a porous
medium subject to a Lack of Local Thermal Equilibrium
(LaLotheq) is discussed by Vadasz [19] identifying condi-
tions for which the traditional formulation of the LaLo-
theq model might not be adequate, the conditions used in
the present paper are not identical to those identified by
Vadasz [19].

The present paper deals with Fourier heat conduction in
a heterogeneous (e.g. porous) or bi-composite medium sub-
ject to LaLotheq. The latter produces a bi-harmonic linear
partial differential equation that possesses wave properties.
Nevertheless, physical constraints exclude the possibility of
thermal wave solutions in such systems. The present paper
demonstrates this exclusion for a heterogeneous (e.g. por-
ous) or bi-composite slab subject to a combination of
Dirichlet–Dirichlet boundary conditions.

2. Problem formulation and properties of the LaLotheq
system

The following analysis uses the terminology applicable
to heat conduction in porous media, although it applies
equally well to any other heterogeneous or bi-composite
system. Therefore the terminology of ‘‘solid phase–fluid
phase” should be converted to ‘‘solid-phase 1–solid phase
2” in the case of bi-composite systems and similar conver-
sions apply to other two-phase systems. The heat conduc-
tion equations for the two phases that compose an
isotropic and homogeneous porous medium subject to
LaLotheq are obtained as phase averages over a Represen-
tative Elementary Volume (REV) following Fourier’s Law

in the form:
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cs

oT s

ot�
¼ ksr2

�T s � hðT s � T fÞ; ð1Þ

cf

oT f

ot�
¼ kfr2

�T f þ hðT s � T fÞ; ð2Þ

where cs = (1 � u)qscs and cf = uqfcp,f are the solid phase
and fluid phase effective heat capacities, respectively, u is
the porosity, ks and kf are the effective thermal conductiv-
ities of the solid and fluid phases, respectively, and h repre-
sents an integral heat transfer coefficient for the heat
conduction at the solid–fluid interface within an REV, as-
sumed to be independent of time and anticipated to depend
on the thermal conductivities of both phases, on the poros-
ity, on the heat transfer surface area and on the tortuousity
of the interface between the solid and fluid phases [20,21].
In the case of fluid flow the value of h will depend also
on local Reynolds and Prandtl numbers of the fluid as pre-
sented by Alazmi and Vafai [17]. In the case of solid parti-
cles suspended in a fluid the effective thermal conductivity
of the solid phase vanishes, i.e. ks = 0, leading to lack of
macroscopic level conduction heat transfer within the solid
phase because the solid particles represent the dispersed
phase in the fluid suspension and therefore the solid parti-
cles can conduct heat between themselves only via the
neighbouring fluid (see [3] for details).

When the Local Thermal Equilibrium (Lotheq) assump-
tion is not valid, conditions appropriate for the case when
the temperature difference between the two phases is not
small, the two Eqs. (1) and (2) are to be solved simulta-
neously. The diffusion terms in these equations are a result
of replacing the �$* � qs and � $* � qf terms by using Fou-
rier’s Law in the form qs = �ks$*Ts and qf = �kf$*Tf to
yield the Laplacian terms. The coupling between the two
equations can be resolved as presented by Vadasz [1–
3,19] leading to

cs

o

ot�
� ksr2

� þ h
� �

cf

o

ot�
� kfr2

� þ h
� �

� h2

� �
T j

¼ 0 8j ¼ s; f ; ð3Þ

where the index j can take the values s representing the so-
lid phase or f standing for the fluid phase. The explicit form
of Eq. (3) is obtained after dividing it by h(cs + cf) in the
form

sq
o

2T j

ot2
�
þ oT j

ot�
¼ ae r2

�T j þ sTr2
�

oT j

ot�

� �
� ber4

�T j

� �
8j ¼ s; f ; ð4Þ

where the following notation was used:

sq ¼
cscf

hðcs þ cfÞ
; ae ¼

ðks þ kfÞ
ðcs þ cfÞ

;

sT ¼
ðcskf þ cfksÞ
hðks þ kfÞ

; be ¼
kskf

hðks þ kfÞ
: ð5Þ

In Eqs. (4) and (5) sq and sT are the heat flux and temper-
ature related time lags linked to the two-phase conduction
delays due to the finite heat capacity of both phases, to be
discussed below, while ae is the effective thermal diffusivity
of the porous medium. It may be observed from Eq. (5)
that there is a dual effect of the heat capacities on the effec-
tive parameters of the uncoupled system in the sense that
the heat flux time lag sq is affected by the heat capacities
of the solid and fluid phases as thermal capacitors con-
nected in series following the relationship:

1

cs
e

¼ 1

cs

þ 1

cf

¼ ðcs þ cfÞ
cscf

! cs
e ¼

cscf

ðcs þ cfÞ
; ð6Þ

while the effective thermal diffusivity ae is affected by the
heat capacities of the solid and fluid phases as thermal
capacitors connected in parallel following the relationship:

cp
e ¼ ðcs þ cfÞ: ð7Þ

In addition the bi-harmonic parameter be can be presented
as the ratio between the effective thermal conductivity due
to the thermal resistances of the solid and fluid phases con-
nected in series and the heat transfer coefficient h, in the
form be = ke/h, where

ks
e ¼

kskf

ðks þ kfÞ
ð8Þ

and the thermal resistance of each phase is defined as 1/kj

"j = s, f.
Eq. (4) is the conduction equation for each phase of a

porous medium that degenerates to the thermal diffusion
equation when sq = sT = be = 0. The latter may occur either
when the effective heat capacities and effective thermal con-
ductivities of the solid and fluid phases are excessively low,
i.e. when (cs,cf,ks,kf) ? 0, or when the fluid–solid interface
heat transfer coefficient is excessively large, i.e. when h ?1
as can be observed from Eq. (5). When only the bi-harmonic
term in Eq. (4) is negligibly small, or identically vanishes i.e.
if be = 0, the equation transforms into the Dual-Phase-Lag-
ging equation. The latter applies accurately to fluid suspen-
sions where ks = 0 as discussed in the text following Eq. (2),
or approximately to heterogeneous and bi-composite media
when be is very small but not identically zero.

The wave properties of Eq. (4) can be observed after
dividing it by ae to obtain

1

c2

o
2T j

ot2
�
þ 1

ae

oT j

ot�
¼ r2

�T j þ sTr2
�

oT j

ot�

� �
� ber4

�T j

8j ¼ s; f ð9Þ

where c2 = ae/sq is the accepted definition of the speed of
propagation of the thermal wave.

A direct property of the parameters defined in Eq. (5) is
obtained by evaluating the ratio sT/sq, which leads to the
following result:

w ¼ sT

sq
¼ 1þ c2

s kf þ c2
f ks

cscfðks þ kfÞ
> 1: ð10Þ

Since the combination of positive valued properties in the
second term of Eq. (10) is always positive, the time lags
ratio is always greater than 1, i.e. sT/sq > 1. The latter



Fig. 1. A fluid saturated porous (or a bi-composite) slab subject to
constant temperature conditions at the walls.
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conclusion is based on a physical argument and it is accu-
rately derived. It applies generally to Fourier heat conduc-
tion in heterogeneous media subject to LaLotheq and is not
restricted to any specific geometry, nor boundary condi-
tions. Note that while each one of the time lags sT and sq

depend on the interface heat transfer coefficient h as ob-
served in Eq. (5), their ratio sT/sq in Eq. (10) is independent
of this coefficient making its evaluation simpler as it de-
pends on the effective properties of each phase and is inde-
pendent of the interaction between the phases.

Further analysis is used now to derive an additional
inequality involving the time lags ratio w that will be useful
in the following derivations and subsequently on the conclu-
sions. For the following analysis it is convenient to introduce
the following notation for the effective thermal conductivi-
ties ratio and effective heat capacities ratio in the form:

gk ¼
kf

ks

; gc ¼
cf

cs

: ð11Þ

Then the time lags ratio w defined in Eq. (10) can be ex-
pressed in terms of gk and gc in the form

w ¼ 1þ
gc

ð1þ gkÞ
þ

g�1
c

ð1þ g�1
k Þ

: ð12Þ

It can be easily checked that Eq. (12) is identical to the def-
inition of w from (10) by substituting Eq. (11) into (12) fol-
lowed by some algebra to produce the expression given in
the definition of w in Eq. (10). An additional dimensionless
ratio Bf that will prove useful in the following analysis and
subsequent derivations is introduced now

Bf ¼ kskfðcs þ cfÞ
2

ðks þ kfÞ2cscf

¼ ks
e

kp
e

cp
e

cs
e

¼
2þ g�1

c þ gc

2þ g�1
k þ gk

: ð13Þ

The following identities are also useful:

ð1þ gkÞð1þ g�1
k Þ ¼ 2þ g�1

k þ gk; ð14Þ
ð1þ gcÞð1þ g�1

c Þ ¼ 2þ g�1
c þ gc: ð15Þ

By using identities (14) and (15) an alternative form of Eq.
(13) is obtained

Bf ¼
2þ g�1

c þ gc

2þ g�1
k þ gk

¼
ð1þ gcÞð1þ g�1

c Þ
ð1þ gkÞð1þ g�1

k Þ
: ð16Þ

Now we create a common denominator for the last two
terms in Eq. (12) leading to

w ¼ 1þ
gc

ð1þ gkÞ
þ

g�1
c

ð1þ g�1
k Þ

¼ 1þ
gc þ g�1

c þ g�1
c gk þ gcg

�1
k

ð1þ gkÞð1þ g�1
k Þ

¼ 1þ
gc þ g�1

c þ
ðg2

cþg2
k Þ

gcgk

ð1þ gkÞð1þ g�1
k Þ

¼
gc þ g�1

c þ 2þ ðgc�gkÞ2

gcgk

ð1þ gkÞð1þ g�1
k Þ

¼ 1þ
2þ gc þ g�1

c

ð1þ gkÞð1þ g�1
k Þ
þ

ðgc � gkÞ
2

gcgkð1þ gkÞð1þ g�1
k Þ

:

By using identity (14) in the denominator of the second
term above yields

w ¼ 1þ
2þ gc þ g�1

c

2þ gk þ g�1
k

þ
ðgc � gkÞ

2

gcgkð1þ gkÞð1þ g�1
k Þ

: ð17Þ

One can recognize now that the second term in Eq. (17) is
the Bf number defined in Eq. (13), transforming Eq. (17)
into the following form:

w ¼ 1þ Bf þ
ðgc � gkÞ

2

gcgkð1þ gkÞð1þ g�1
k Þ

: ð18Þ

The third term in Eq. (18) is always non-negative, therefore
the following inequality applies for the time lags ratio w:

w P 1þ Bf ð19Þ
with the equality holding only for gk = gc, leading to Bf = 1
and w = 2. The latter conclusion expressed by inequality
(19) is based on physical properties of the materials and
has a profound impact on the following results.

The analysis of the bi-harmonic Eq. (4) governing heter-
ogeneous and bi-composite media conduction subject to
LaLotheq is undertaken for the particular case correspond-
ing to the one dimensional heat conduction in a slab of
length L as presented in Fig. 1. Transforming Eq. (4) into
a dimensionless form by using L to scale the independent
length variable x*, i.e. x = x*/L, by using L2/ae to scale
the time, i.e. t = aet*/L2 and introducing the dimensionless
temperature, hj

hj ¼
ðT j � T CÞ
ðT H � T CÞ

8j ¼ s; f ; ð20Þ

where TC and TH are the cold-wall and hot-wall imposed
temperatures, respectively, both considered constant yields
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Foq
o2hj

ot2
þ ohj

ot
¼ o2hj

ox2
þ FoT

o3hj

otox2
� Bh

o4hj

ox4
8j ¼ s; f ;

ð21Þ
where two Fourier numbers, Foq, FoT, and one additional
dimensionless group, the bi-harmonic number Bh,
emerged, and are defined in the form

Foq ¼
aesq

L2
; FoT ¼

aesT

L2
; Bh ¼ be

L2
: ð22Þ

Note that from Eq. (22) the form of the condition for the
time lags ratio (10) remains the same when expressed in
terms of the Fourier numbers ratio, i.e. w = sT/sq = FoT/
Foq > 1. Similarly inequality (19) can be expressed in terms
of the Fourier numbers ratio, i.e. w = FoT/Foq P 1 + Bf.

We need four boundary conditions to be consistent with
the differential equation, which is fourth order in the
spatial coordinate. Therefore for a combination of Dirich-
let–Dirichlet boundary conditions for Eqs. (1) and (2) the
corresponding boundary conditions for Eq. (21) are

x ¼ 0 : hj ¼ 0;
o

2hj

ox2

� �
x¼0

¼ 0 8j ¼ s; f ; ð23Þ

x ¼ 1 : hj ¼ 1;
o2hj

ox2

� �
x¼0

¼ 0 8j ¼ s; f : ð24Þ

The second derivative boundary conditions in (23) and (24)
are obtained by using Eqs. (1) and (2) in one dimension and
by substituting the following conditions at the boundaries
ðT sÞx�¼0 ¼ ðT fÞx�¼0 ¼ T C ¼ const. and ðT sÞx�¼L ¼ ðT fÞx�¼L ¼
T H ¼ const. leading to ðo2T f=ox2Þx�¼0 ¼ ðo

2T s=ox2Þx�¼0 ¼ 0

and ðo2T f=ox2Þx�¼L ¼ ðo
2T s=ox2Þx�¼L ¼ 0. The latter expres-

sions are presented in a dimensionless form by the second
derivative terms in Eqs. (23) and (24).

We need two initial conditions to be consistent with the
differential equation, which is second order in time. The
initial conditions applicable for initial distinct constant
temperatures for the phases is

t ¼ 0 : hj ¼ hj;o ¼ const: and _hj ¼ _hj;o ¼ const:

8j ¼ s; f ; ð25Þ

where the dot symbol (�) is the Newtonian representation of a
time derivative, and where the derivative initial condition
was obtained by substituting the first constant temperature
initial condition ðT sÞt�¼0 ¼ T s;o ¼ const. and ðT fÞt�¼0 ¼
T f ;o ¼ const. into Eqs. (1) and (2) leading to ðoT s=otÞt�¼0 ¼
hðT s;o � T f ;oÞ=cs ¼ _T s;o and ðoT f=otÞt�¼0 ¼ hðT f;o � T s;oÞ=
cf ¼ _T f ;o. The latter is expressed in the following dimension-
less form _hs ¼ _hs;o ¼ const. and _hf ¼ _hf ;o ¼ const. as pre-
sented in Eq. (25). Note that the conclusions presented in
this paper are independent of the initial conditions. These
conditions affect only the coefficients of the final form of
the series solution but not its eigenvalues and eigenfunctions.
Any form of more general initial conditions lead to the same
conclusions; the choice adopted here is therefore for simplic-
ity only.
3. Analytical solution

As the equations, boundary and initial conditions for
each phase are similar (though different due to the different
constant values of the initial temperature time derivative),
their solution will be qualitatively similar and we may drop
the subscripts s and f for convenience, except when they
appear in the initial conditions. The solution to Eq. (21)
is separated into steady state hsts and transient htr parts
in the form h = hsts + htr. The steady state is represented
by the linear solution hsts = x, which satisfies the boundary
conditions Eqs. (23) and (24). Its derivation is a bit longer
than the trivial derivation for the usual second order steady
state conduction equation but eventually leads to the same
solution. The transient solution htr has to fulfil the equation

Foq
o

2htr

ot2
þ ohtr

ot
¼ o

2htr

ox2
þ FoT

o
3htr

otox2
� Bh

o
4htr

ox4
ð26Þ

and the following boundary and initial conditions:

at x¼ 0 and x¼ 1 : ðhtrÞx¼0;1¼ 0;
o2htr

ox2

� �
x¼0;1

¼ 0; ð27Þ

t¼ 0 : hj;tr¼ðhj;o� xÞ and _hj;ðtrÞ ¼ _hj;o 8j¼ s; f : ð28Þ

The solution is obtained by separation of variables in the
form of two equations for each phase htr = /n(t)un(x),
where the functions /n(t) and un(x) are identical for both
phases because of the identical boundary conditions (14)
and (15). These equations are

d2/n

dt2
þ cn

d/n

dt
þ x2

n/n ¼ 0; ð29Þ

d2un

dx2
þ j2

nun ¼ 0: ð30Þ

The solution of Eq. (30) subject to the homogeneous
boundary conditions (un)x=0,1 = 0 and (d2un/dx2)x=0,1 = 0
at x = 0,1 is un = ansin(jnx) and the resulting eigenvalues
are jn = np, "n = 0,1,2,3, . . . The coefficients cn and x2

n

in Eq. (29) are defined in the form

cn ¼ Fo�1
q ð1þ j2

nFoT Þ ¼ Fo�1
q ð1þ n2p2FoT Þ; ð31Þ

x2
n ¼ Fo�1

q j2
nð1þ j2

nBhÞ ¼ Fo�1
q n2p2ð1þ n2p2BhÞ: ð32Þ

Eq. (29) represents a linear damped oscillator having a
natural frequency xn and a damping coefficient cn. Its
eigenvalues are

k1n ¼ �
cn

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

x2
n

c2
n

s" #
; ð33Þ

k2n ¼ �
cn

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

x2
n

c2
n

s" #
: ð34Þ

The solution for /n is overdamped if for some values of n

the condition 4x2
n < c2

n is satisfied, leading to

htr;n ¼ ðA1nek1nt þ A2nek2ntÞ sinðjnxÞ; ð35Þ
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it is critically-damped if for some values of n = ncr the con-
dition 4x2

ncr
¼ c2

ncr
is satisfied, i.e. k1n ¼ k2n ¼ kncr ¼ �cncr=2

leading to

htr;ncr ¼ ðA1ncr e
kncr t þ A2ncr te

kncr tÞ sinðjncr xÞ ð36Þ
and it is underdamped if for some values of n the condition
4x2

n > c2
n is satisfied, i.e. k1n = krn � ikin and k2n = krn +

ikin, where krn = �cn/2 and kin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2

n � c2
n

p
=2, leading to

decaying thermal waves in the form

htr;n ¼ e�
cn
2 tfA1n½cosðkint � jnxÞ � cosðkint þ jnxÞ�

� A2n½sinðkint � jnxÞ � sinðkint þ jnxÞ�g: ð37Þ

In general the complete solution assuming the existence of
one and only one critical value of ncr P 1 has the form

h ¼ xþ
XNo

n¼1

½Anekn1t þ Bnekn2t� sinðnpxÞ

þ ekncr t½Ancr þ Bncr t� sinðncrpxÞdncr ;m

þ
X1
n¼N1

e�
cn
2 tfAn½cosðkint � jnxÞ � cosðkint þ jnxÞ�

� Bn½sinðkint � jnxÞ � sinðkint þ jnxÞ�g; ð38Þ

where

No¼bncrc�dncr;m¼
ðncrþ1Þ 8ncr¼m; m¼ 1;2;3; . . . ;

bncrc 8ncr 6¼m; m¼ 1;2;3; . . . ;

�
ð39Þ

N 1¼bncrcþ1¼
ðncrþ1Þ 8ncr¼m; m¼ 1;2;3; . . . ;

Noþ1 8ncr 6¼m; m¼ 1;2;3; . . . ;

�
ð40Þ

where dncr ;m is the Kronecker delta function defined in the
form

dncr;m ¼
1 8ncr ¼ m; m ¼ 1; 2; 3; . . . ;

0 8ncr 6¼ m; m ¼ 1; 2; 3; . . .

�
ð41Þ

and where bncrc is the inclusive floor function representing
the largest integer less than or equal to ncr. The value of ncr

is established from the condition 4x2
ncr
¼ c2

ncr
and is ex-

pressed in the form

ncr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ðw� 2Þ

p2Foqðw2 � 4BfÞ
1� 2

ðw� 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bf � w

p� �s
;

ð42Þ

where w = FoT/Foq is a dimensionless number representing
the time lags ratio defined in Eq. (10) and Bf = Bh/Foq is
identical to the dimensionless group defined in Eq. (13)
or (16) representing the ratio between the bi-harmonic
number and the heat flux related Fourier number, Foq.

4. Conditions for oscillations and resonance

The condition for underdamped solutions and their
associated oscillations is further explored to obtain explicit
criteria in terms of the primitive parameters of the original
system. The condition for underdamped (oscillatory) and
critically damped solutions is obtained by using the defini-
tions from Eqs. (31) and (32) and the conditions listed
above following Eqs. (36) and (35), respectively, in the
form:

c2
n

4x2
n

¼ ½1þ j2
nFoT �2

4Foqj2
nð1þ j2

nBhÞ 6 1; ð43Þ

where the inequality applies to underdamped conditions,
while the equality corresponds to critically damped condi-
tions. Inequality (43) can be expanded in the form

ðFo2
T � 4FoqBhÞj4

n þ 2ðFoT � 2FoqÞj2
n þ 1 6 0; ð44Þ

or alternatively in the form

Fo2
qðw

2 � 4BfÞj4
n þ 2Foqðw� 2Þj2

n þ 1 6 0: ð45Þ

We aim at deriving explicit conditions in terms of the prim-
itive parameters of the system from inequality (45). To
move towards this aim one may present inequality (45) in
the form of a set of two inequalities

j4
n þ

2ðw�2Þ
Foqðw2�4BfÞ j

2
n þ 1

Fo2
qðw2�4BfÞ 6 0 and w2 > 4Bf ;

or

j4
n þ

2ðw�2Þ
Foqðw2�4BfÞ j

2
n þ 1

Fo2
qðw2�4BfÞ P 0 and w2 < 4Bf :

8>><
>>:

ð46Þ
These inequalities representing the conditions for under-
damped and critically damped solutions may be presented
in the form

j4
n þ bj2

n þ c 6 0 and w2 > 4Bf ;

or

j4
n þ bj2

n þ c P 0 and w2 < 4Bf ;

8><
>: ð47Þ

where

b ¼ 2ðw� 2Þ
Foqðw2 � 4BfÞ

; c ¼ 1

Fo2
qðw

2 � 4BfÞ
: ð48Þ

We are looking for the domain of positive and negative val-
ues of the function

y � j4
n þ bj2

n þ c: ð49Þ
The roots of this function, i.e. the intersection of the func-
tion with the j2

n axis, represent the critical values of j2
n, i.e.

j2
n;cr. They are obtained by equating y in Eq. (49) to zero, to

yield the solution to the quadratic equation y � j4
nþ

bj2
n þ c ¼ 0 in the form

j2
n;cr ¼ �

ðw� 2Þ
Foqðw2 � 4BfÞ

1� 2

ðw� 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bf � w

p� �
: ð50Þ

Since j2
n;cr ¼ n2p2 for n = 1,2,3, . . ., the roots of the func-

tion y, presented in Eq. (50), have to be real leading to
the condition w < 1 + Bf. In addition, the roots j2

n;cr have
to be positive in order for jn,cr = ncrp to be real. The con-
dition that the roots j2

n;cr be real implies a condition that
discriminant in Eq. (50) has to be non-negative, i.e.
(1 + Bf � w) P 0 or in the form
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w 6 1þ Bf : ð51Þ
However, it was demonstrated in Eq. (19) that based on the
physical properties of the materials w P 1 + Bf always,
with the equality holding for gk = gc (corresponding to
Bf = 1 and w = 2). Since the condition (51) for real roots
of j2

n;cr is in definite contrast with the physical reality ex-
pressed by inequality (19) one may conclude that under-
damped oscillations and consequently thermal waves are
excluded from the solution. The particular equality case
of (19) might overlap with the equality in (51) but produces
a degenerated and singular result. Therefore, by excluding
these underdamped and critically damped modes trans-
forms the solution (38) into the following form:

h ¼ xþ
X1
n¼1

½Anekn1t þ Bnekn2t� sinðnpxÞ; ð52Þ

where k1n and k2n are evaluated from Eqs. (33) and (34) and
the coefficients An and Bn are being evaluated from the
initial conditions. Clearly this is a solution of ‘‘hyper-diffu-
sion” for the time variation, i.e. bi-exponential decay in
time towards a time-independent steady state.

5. Conclusions

The heat conduction in heterogeneous and bi-composite
media subject to Lack of Local Thermal Equilibrium
(LaLotheq) lead to the expectation that thermal waves
and resonance are possible. It was demonstrated that such
thermal oscillations and consequently resonance are
excluded in a slab subject to a combination of Dirichlet–
Dirichlet boundary conditions.
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